If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-161=0
a = 1; b = 4; c = -161;
Δ = b2-4ac
Δ = 42-4·1·(-161)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{165}}{2*1}=\frac{-4-2\sqrt{165}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{165}}{2*1}=\frac{-4+2\sqrt{165}}{2} $
| 8x=(6x-2)2 | | 6x+7-28=3-2x | | 3(4x+2)=20x–9x+2* | | 43*17=43*w-43*3 | | 20/14=40/n | | 28÷x=160 | | 5/4=40/n | | a+a+a^2=180 | | x³-21x-20=0 | | 3(p+10=-12 | | -2-3/4k=1/8k+4 | | 3/4=n/40 | | x=500x150 | | 4d−8=4 | | 408/17=d | | 4x+4+(4x)=140 | | -3b-4+2=19 | | 4x+(2x-10)+(2x+30)=180 | | 4x+(2x-10)+2x+30=180 | | 9/3=b/7 | | 4x+36+2x+2x=-4x-24-3x | | n/52=18/12 | | –5w=2−7w | | v+2=16 | | 3a+4(11)=101 | | 12x²-6x=0 | | c+-5=-1 | | n/3=28/2 | | x2+16=13 | | -336=6(-8x-8) | | 10/7=X+8/x-10 | | 5*28*x+76=172 |